Главная / Рекомендации по применению фиброволокна

Фиброволокно: расход, рекомендации по применению

Область применения Рекомендуемый размер фиброволокна, мм Расход фиброволокна
Промышленные полы, 
цементнобетонные дорожные покрытия
12, 20, 40 от 1 кг  на 1 м3  в зависимости от необходимых прочностных характеристик
Стяжки, теплые полы 12, 20 от 0,9 до 1,5 кг  кг на 1  м3  в зависимости от необходимых прочностных характеристик
Железобетонные, бетонные конструкции и изделия  12, 20 от 0,9 кг на 1 м3 для придания конструкциям и изделиям повышенной прочности и исключения трещин
Ячеистые бетоны (пенобетон, газобетон неавтоклавного твердения) 12, 20, 40 от 0,6 кг до 1,5 кг  волокна на 1 м3 в зависимости от необходимых прочностных характеристик готового изделия
Сухие строительные смеси (наливные полы, штукатурки, шпаклёвки, затирки, гидроизоляция, ремонтные составы) 3, 6, 12 от 1 кг  на 1 м3 Дозировка зависит от вида сухой строительной смеси, технологии производства
Мелкоштучные изделия, сложнопрофильные изделия, малые архитектурные формы 6, 12 от 0,9 кг  на 1 м3 Расход фиброволокна зависит от параметров изделия, размеров, типа вяжущего, технологии производства
Тротуарная плитка 6, 12 от 0,6 кг до 1,5 кг  на 1м³ смеси в зависимости от прочностных характеристик готового изделия, технологии производства.
Жидкие обои, клеевые составы 3 от 0,5 кг  на 1 м3  Дозировка зависит от технологии производства

Способ применения фиброволокна

Вариант 1: Фиброволокно засыпается в любой бетоно- или растворосмеситель (миксер) в сухую смесь перед добавлением воды .

Вариант 2: Фиброволокно  добавляется в цементное молоко, затем все остальные компоненты бетонной смеси.
 

Рекомендации по применению фиброволокна

Объемное армирование бетона (пенобетона, цементно-песчаных смесей) с помощью полимерных волокон в последние годы все шире применяется в строительной индустрии. В отличие от армирующих сеток из стали, микроволокна равномерно распределяются в объеме смеси, улучшают вяжущие свойства, делают ее устойчивой к расслоению.

Применение фиброволокна приводит к тому, что бетон становится более прочным к растяжениям, снижается показатель его усадки, что повышает трещиностойкость. Вместе с тем возрастает устойчивость материала к воздействию среды: к чередующимся циклам замораживания и оттаивания, высыхания и увлажнения.

Фиброволокно расходЭффективность армирования бетона с помощью полимерного микроволокна - величина переменная, которая определяется рядом параметров: длиной и диаметром волокон, модулем упругости полимера, а также количеством волокон в единице объема цементной смеси.

Наиболее важными факторами являются упругость и длина волокон: чем больше модуль упругости полимера соответствует аналогичному показателю цементной матрицы, и чем больше по длине используемые волокна, тем значительнее будет влияние дисперсионного армирования на характеристики трещиностойкости бетона. Следует отметить, что длина волокон не должна быть чрезмерно высокой - это привело бы к появлению технологических трудностей при попытке провести равномерное распределение микроволокон в объеме подготавливаемой смеси.

Для каждого вида бетонной смеси следует опытным путем устанавливать, какая длина
волокна является оптимальной - при каком показателе будет достигаться наиболее равномерное распределение армирующей добавки по объему. К примеру, для пенобетонных смесей используется волокно длиной до 40 мм, в случае тяжелого подвижного бетона - длиной от 12 до 20 мм, а если смеси малоувлажненные, уплотняемые с помощью метода вибропрессования - не более 6-7 мм.

Испытания данных армирующих добавок для цементно-песчаных растворов (под устройство стяжек) и для пенобетона проводились в Ростовском государственном строительном университете, на кафедре строительных материалов. Ниже, в таблице, приводятся результаты исследований влияния количества полипропиленового волокна в смеси на прочностные характеристики, на растяжение при изгибе, на усадку состава при высыхании.

Таблица 1. Влияние содержания полипропиленового волокна на прочность материала при изгибе и усадку при высыхании пенобетона (длина волокон 20 мм)

Серия Расход фибры
на 1 м3 бетона, кг
Средняя плотность
бетона, кг/м3
Прочность на растяжение при изгибе Нормированная усадка ( в интервале влажности 5-35%) Общая усадка (при полном высыхании)
МПа % мм/м % мм/м %
Ф-1 0,00 528 0,23 100 3,55 100 8,1 100
Ф-2 0,98 538 0,41 178 3,07 86 7,2 89
Ф-3 1,95 530 0,54 235 3,32 93 7,1 88
Ф-4 2,92 532 0,60 261 3,67 103 6,8 84
 

Данные, приведенные в таблице 1, дают возможность сделать вывод: при изготовлении фибробетона марки D500 (самого популярного по плотности) наибольший технико-экономический эффект будет достигнут при дозировке фибры от 0,6 до 2 кг/м3. Показатель прочности на растяжение при изгибе при этом вырастает примерно в 2 раза, а нормированная усадка при высыхании снижается на 10-15%.

Таблица 2. Влияние полипропиленового волокна на усадку цементно-песчаной смеси при полном высыхании и на прочность при изгибе (длина волокон 12 мм)

  Серия

Расход
фибры
на 1 м3
бетона,

кг               

Прочность при сжатии, МПа

Прочность
на растяжение
при изгибе
Общая усадка
(при полном 
высыхании)
МПа % мм/м %
Ф-1 0,00 29,2 1,63 100 1,32 100
Ф-2 0,95 26,0 2,27 139 0,93 70
Ф-3 1,43 27,1 2,56 157 0,81 61
Ф-4 1,90 28,7 2,80 172 0,54 41
 


Как следует из приведенных показателей, включение волокна в качестве армирующей добавки оказало существенное влияние на показатель прочности на растяжение при изгибе и усадку цементно-песчаного раствора при высыхании. В данном случае положительное влияние фибры сказывается при росте ее дозировки. В цементно-песчаных стяжках оптимальным показателем для снижения риска образования трещин при усадке является величина в пределах от 1 до 2 кг/м3.

Таким образом, применение полипропиленового волокна позволяет улучшить показатели трещиностойкости пенобетона и плотного песчаного бетона.